## CHEMISTRY

1. For I<sup>st</sup> order reaction, time required for 99.9% completion is :

(1) 
$$2t_{1/2}$$
 (2)  $4t_{1/2}$  (3)  $5t_{1/2}$  (4)  $10t_{1/2}$ 

Ans. (4)

Sol.  $\frac{t_{99.9\%}}{t_{1/2}} = \frac{\frac{1}{k} \ln\left(\frac{100}{100 - 99.9}\right)}{\frac{1}{k} \ln 2} = \frac{\ln(10^3)}{\ln 2} = \frac{3}{0.3} = 10$  $t_{99.9\%} = 10t_{1/2}$ 

- 2. Number of non polar molecules among following are : HF, H<sub>2</sub>O, CO<sub>2</sub>, NH<sub>3</sub>, SO<sub>2</sub>, H<sub>2</sub>, CH<sub>4</sub>, BF<sub>3</sub>
- Ans. (4)

**Sol.** CO<sub>2</sub>, H<sub>2</sub>, CH<sub>4</sub>, BF<sub>3</sub>

3. 3M NaOH solution is to be prepared using 84 g NaOH, then the volume of solution in litre is  $\_ \times 10^{-1}$ 

Ans. (7)

Ans.

**Sol.** 
$$3 = \frac{84/40}{V_{sol(L)}}$$

- $\therefore$  V<sub>solution</sub> = 0.7 L
- 4. Select incorrect match :

| (3)                    |                                                                                               |
|------------------------|-----------------------------------------------------------------------------------------------|
| (4) Photography :      | AgBr                                                                                          |
| (3) Wacker's process : | PtCl <sub>2</sub>                                                                             |
| (2) Polythene :        | Ziegler-Natta catalyst [Al <sub>2</sub> (CH <sub>3</sub> ) <sub>6</sub> + TiCl <sub>4</sub> ] |
| (1) Haber process :    | Fe                                                                                            |

**Sol.** Wacker's process : PdCl<sub>2</sub>

| 5.   | 1 mole PbS is oxidised by x mole $O_3$ liberating y mole $O_2$ .                                      |                                                |                                              |                  |  |
|------|-------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|------------------|--|
|      | Determine $(x + y)$ .                                                                                 |                                                |                                              |                  |  |
| Ans. | (8)                                                                                                   |                                                |                                              |                  |  |
| Sol. | $PbS + 4O_3 \longrightarrow PbS$                                                                      | $SO_4 + 4O_2$                                  |                                              |                  |  |
|      | x = 4; $y = 4$                                                                                        |                                                |                                              |                  |  |
|      |                                                                                                       |                                                |                                              |                  |  |
| 6.   | Spin only magnetic                                                                                    | moment of [Pt(NH <sub>3</sub> ) <sub>2</sub> C | cl(CH <sub>3</sub> NH <sub>2</sub> )]Cl is : |                  |  |
| Ans. | (0)                                                                                                   |                                                |                                              |                  |  |
| Sol. | $Pt^{+2}: 5d^8 \Rightarrow dsp^2 \& unpaired e^- = 0 \Rightarrow Magnetic moment = 0$                 |                                                |                                              |                  |  |
|      |                                                                                                       |                                                |                                              |                  |  |
| 7.   | <b>S-1:</b> Formation of $Ce^{4+}$ is favoured by inert gas configuration.                            |                                                |                                              |                  |  |
|      | <b>S-2:</b> $Ce^{4+}$ acts as strong oxidising agent & converts to $Ce^{3+}$ .                        |                                                |                                              |                  |  |
| Ans. | Both S-1 & S-2 are correct.                                                                           |                                                |                                              |                  |  |
|      |                                                                                                       |                                                |                                              |                  |  |
| 8.   | Which of the follow                                                                                   | ing can't act as oxidisin                      | ng agent ?                                   | 2                |  |
|      | (1) $MnO_4^-$                                                                                         | (2) $N^{3-}$                                   | (3) $BrO_3^{-}$                              | (4) $SO_4^{2^-}$ |  |
| Ans. | (2) $(2)$                                                                                             |                                                |                                              | · • •            |  |
| Sol. | In $N^{-3}$ , nitrogen is present in minimum O.N. & hence it cannot act as oxidising agent.           |                                                |                                              |                  |  |
| 0    |                                                                                                       |                                                |                                              |                  |  |
| ).   | (1) Molarity                                                                                          | (2) Molality                                   | (3) Mole fraction                            | (A) Mass %       |  |
| Ans  | (1) Wolanty<br>(1)                                                                                    | (2) woranty                                    |                                              | (4) 11/1/05 /0   |  |
| Sol. | Ouantities involving                                                                                  | volume are temperatu                           | re dependent                                 |                  |  |
| 201  |                                                                                                       | ••••••••••••••••••••••••••••••••••••••         | •••••                                        |                  |  |
| 10.  | Reduction potential of hydrogen electrode at $pH = 3$ is                                              |                                                |                                              |                  |  |
|      | $(2.303 \text{RT}_{0.052})$                                                                           |                                                |                                              |                  |  |
|      | $\left($                                                                                              |                                                |                                              |                  |  |
| Ans. | (-0.177 volt)                                                                                         |                                                |                                              |                  |  |
| Sol. | $\mathrm{H}^{+}(\mathrm{aq}) + \mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{H}_{2}(\mathrm{g})$ |                                                |                                              |                  |  |
|      | R.P. = $-\frac{0.059}{1}\log\left(\frac{1}{H^+}\right) = -0.059\log(10^{+3})$                         |                                                |                                              |                  |  |
|      | $= -0.059 \times 3 = -0.177$ volt                                                                     |                                                |                                              |                  |  |
|      |                                                                                                       |                                                |                                              |                  |  |

11. Identify the species in which central atom is in  $d^2sp^3$  hybridisation :

(3)  $[PtCl_4]^{2-}$ (4)  $[Co(NH_3)_6]^{3+}$ (1)  $SF_{6}$ (2)  $BrF_5$ Ans. (4)  $sp^3d^2$  $SF_6$ : Sol.  $sp^3d^2$ BrF<sub>5</sub> :  $[PtCl_4]^{2-}$ :  $dsp^2$  $[Co(NH_3)_6]^{3+}$  $d^2sp^3$ •

- **12.**  $\Delta H^{\circ} = +77.2 \text{ kJ}, \Delta S^{\circ} = 122 \text{ J/mol-K}, T = 300 \text{ K}, \log K = ?$
- Ans. (-7.07)
- **Sol.**  $\Delta G^{\circ} = -2.303 RT log k$

| 77.2   | $\frac{300 \times 122}{2}$ | $-2.303 \times 8.314 \times 300 \log K$ |
|--------|----------------------------|-----------------------------------------|
| 11.2 - | 1000                       | 1000                                    |
| ∴ logl | K = -7.07                  |                                         |

**13.** In group 16

**Statement-I**: Oxygen shows only –2 oxidation state.

**Statement-II** : On moving top to bottom, stability of +4 oxidation state decreases, whereas that of +6 oxidation state increases.

- (1) Both Statement I and Statement II are correct.
- (2) Both Statement I and Statement II are incorrect.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I is incorrect but Statement II is correct.
- Ans. (2)
- Sol. Statement-I : Since electronegativity of oxygen is very high, it shows only negative oxidation state as -2 except in the case of OF<sub>2</sub> where its oxidation state is +2.

**Statement-II**: The stability of + 6 oxidation state decreases down the group and stability of + 4 oxidation state increases (inert pair effect).

- 14. How many of following has/have noble gas configuration ?  $Sr^{2+}$ ,  $Cs^+$ ,  $Yb^{+2}$ ,  $La^{2+}$
- Ans. (2)
- **Sol.**  $(Sr^{2+}, Cs^{+})$
- **15.** Which of the following has  $d^{10}$  configuration ?

|      | (1) Cr, Cd, Cu, Ag    | (2) Cd, Cr, Ag, Zn |
|------|-----------------------|--------------------|
|      | (3) Ag, Cr, Cu, Zn    | (4) Cu, Cd, Zn, Ag |
| Ans. |                       |                    |
| Sol. | $Cr : [Ar] 3d^5 4s^1$ |                    |

Cu : [Ar]  $3d^{10} 4s^1$ Ag : [Kr]  $4d^{10} 5s^1$ Zn : [Ar]  $3d^{10} 4s^2$ Cd : [Kr]  $4d^{10} 5s^2$ 

16. Which of the following is used to identify the phenolic group test?

- (1) Carbylamine test(2) Lucas test(3) Tollen's test(4) Phthalein dye test
- Ans. (4)





Ans. (P) – (2); (Q) – (1); (R) – (4); (S) – (3)

19. When egg is boiled then which of the following structure of protein remains intact?

- (1) Quaternary structure (2) Primary structure
- (3) Secondary structure (4) Tertiary structure

Ans. (2)

**20.** Which of the following compound will not give  $S_N$ 1 reaction?

- (1)  $CH_2=CH-CH_2Cl$  (2)  $Ph-CH_2-Cl$ (3)  $\underset{H_3C}{H_3C}CH-Cl$  (4)  $CH_3-CH=CH-Cl$
- Ans. (4)
- 21. The second homologue of monocarboxylic acid is

(1) HCOOH (2) CH<sub>3</sub>COOH (3) CH<sub>3</sub>CH<sub>2</sub>COOH (4) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>-COOH Ans. (2)

22. 
$$() \xrightarrow{CH=CH_2} (1) \xrightarrow{B_2H_6/H_2O_2,OH^{\Theta}} \text{Product is} \\ (2) \xrightarrow{HBr} (3) \xrightarrow{Mg/dry \text{ ether}} (4) \xrightarrow{H-C-H} (4) \xrightarrow{H-C-H} (5) \xrightarrow{H_3O^+} (5) \xrightarrow{H_3O^+} (5) \xrightarrow{H_3O^+} (2) \xrightarrow{Ph-CH_2-CH_2-CH_2-OH} (1) \xrightarrow{Ph-CH-CH_3} (2) \xrightarrow{Ph-CH_2-CH_2-OH} (3) \xrightarrow{Ph-CH_2-CH_2-O-CH_3} (4) \xrightarrow{Ph-CH_2-CH_3-OH} (4) \xrightarrow{Ph-CH_2-CH_3-OH} (4) \xrightarrow{Ph-CH_2-CH_3-OH} (4) \xrightarrow{Ph-CH_2-CH_3-OH} (4) \xrightarrow{Ph-CH_2-CH_3-OH} (4) \xrightarrow{Ph-CH_2-CH_3-OH} (4) \xrightarrow{Ph-CH_3-OH} (4) \xrightarrow{P$$



**23.** When 9.3 gm of aniline in reacted with acetic anhydride then mass of acetanilide formed is [X] gm. Report your answer as 10X.



Mole of Aniline = 
$$\frac{9.3}{93} = 0.1$$

Mole of acetanilide = 0.1 Mass of acetanilide =  $0.1 \times 135 = 13.5$  gm  $10x = 13.5 \times 10 = 135$  gm

24. The correct stability order of following resonating structures is

(I) CH<sub>2</sub>=CH–CH=O (II) 
$$\stackrel{\oplus}{CH_2-CH=C-H}$$
 (III)  $\stackrel{\Theta}{CH_2-CH=C-H}$   
(1) II > III > I (2) I > II > III (3) I > III > II (4) III > II > I  
Ans. (2)

- 25. Steam volatile and water immiscible substances are separated by
  - (1) Steam distillation (2) Fractional distillation under reduced pressure
  - (3) Fractional distillation (4) Distillation.
- Ans. (1)

26. How many of the following compounds contain chiral centre ?





27. The bond line representation of following compound is CH(OH)(CN)<sub>2</sub>



