- (2) Both A and R are true and R is the correct explanation of A
- (3) Both A and R are true but R is not the correct explanation of A
- (4) A is true but R is false
- Ans. (3)
- Sol. Due to the presence of completely filled d and/ or f orbitals in heavier members.
- 2. On mixing benzene and naphthalene freezing point :
 - (1) Decreases (2) Increases
 - (3) Firstly decreases then increases (4) Remains unchanged
- Ans. (4)
- Sol. Benzene and naphthalene forms ideal solution.
- 3.

	Column-l		Column-II	
(a)	24Cr+2	(i)	3d ⁷	
(b)	25 Mn +1	(ii)	3d ²	
(c)	23V ⁺³	(iii)	3d ⁴	
(d)	27CO ⁺²	(iv)	3d ⁵ , 4s ¹	

Select the correct matching (1) a-(iii), b-(iv), c-(ii), d-(i) (3) a-(i), b-(ii), c-(iii), d-(iv)

Ans. (1)

Sol. ${}_{24}Cr^{+2} = [Ar] 3d^4$ ${}_{25}Mn^{+1} = [Ar] 3d^5, 4s^1$ ${}_{23}V^{+3} = [Ar] 3d^3$ ${}_{27}Co^{+2} = [Ar] 3d^7$ (2) a-(ii), b-(iii), c-(i), d-(ii) (4) a-(iv), b-(i), c-(iii), d-(ii)

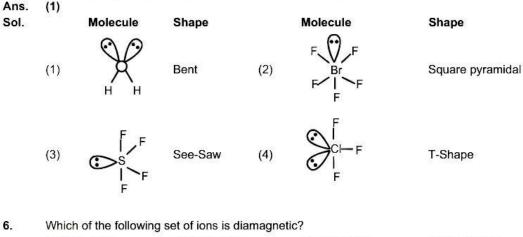
- 4. Statement-I : Orbitals of same energy are degenerate orbitals. Statement-II : 3p and 3d orbitals in H atom are not degenerate.
 - (1) Statement I and Statement II are correct.
 - (2) Statement I is correct and Statement II is incorrect
 - (3) Statement I is incorrect and Statement II is correct
 - (4) Statement I and Statement II are incorrect
- Ans. (2)
- Sol. Same energy orbitals are degenerate orbital

In hydrogen atom 3p and 3d orbital have same energy because for H-atom $E_n = -13.6 \times \frac{z^2}{n^2} eV$, energy

depends on only n.

5.

	List-I		List-II
(P)	H ₂ O	(i)	Bent
(Q)	BrF₅	(ii)	See-Saw
(R)	SF4	(iii)	T-shape
(S)	CIF ₃	(iv)	Square pyramidal
		(v)	Linear


Select the correct matching (1) P-(i), Q-(iv), R-(ii), S-(iii)

(3) P-(v), Q-(i), R-(iii), S-(iv)

(2) P-(iv), Q-(v), R-(iii), S-(i)
(4) P-(i), Q-(v), R-(iv), S-(iii)

Ans.

6.

(1) La+3, Ce+4 (2) Nd+3, Ce+4 (3) Lu+3, Eu+2 (4) Nd+3, Gd+3 Ans. (1)

- Sol. 57La : [54Xe] 5d1 6s2 58Ce : [54Xe] 4f1 5d1 6s2 60Nd : [54Xe] 4f4 6s2 63Eu : [54Xe] 4f7 6s2 64Gd : [54Xe] 4f7 5d1 6s2 71Lu : [54Xe] 4f14 5d1 6s2
- 7. Statement-I: Reaction of a compound on treatment with dil. H₂SO₄ produces a gas which on passing through lead acetate filter paper turns paper black . It is confirmatory test for S-2 acid radical. Statement-II : Lead sulphite is formed
 - (1) Statement I and Statement II are correct.
 - (2) Statement I is correct and Statement II is incorrect
 - (3) Statement I is incorrect and Statement II is correct
 - (4) Statement I and Statement II are incorrect
- Ans. (2)
- Sol. Na₂S(aq) + H₂SO₄ (dil) \longrightarrow Na₂SO₄(aq) + H₂S[↑]

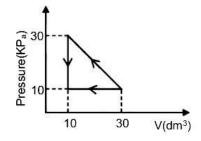
 $(CH_3COO)_2 Pb + H_2S \longrightarrow PbS\downarrow + CH_3COOH$

(Black)

8.	Aluminium chloride in acidified aqueous solution forms an ion with the shape				
	(1) Tetrahedral	(2) Octahedral			
	(3) Square planar	(4) Trigonal bipyramidal			
Ans.	(2)	(i) rigonal pip),anndar			
Sol.	AICl ₃ in acidifed aqueous solution froms octahedral [Al(H ₂ O) ₆] ³⁺ ion.				
9.	The maximum number of mole	cular orbitals formed by 2s and 2p atomic orbitals of two atoms are			
Ans.	(8)				
Sol.	From 2s & 2p atomic orbtials of	From 2s & 2p atomic orbtials of two atoms following MO are formed.			
	ABMO : σ*2s, σ*2p _z , π*2p _x , π*2p _y .				
	BMO : σ2s, σ2pz, π2px, π2py.				
10.	al⁻ + 2MnO₄¯ + bH₂O → xMı	$nO_2 + yI_2 + zOH^-$			
	Determine value of z.				
Ans.	(8)				
Sol.	$6l^- + 2MnO_4^- + 4H_2O \longrightarrow 2MnO_2 + 3l_2 + 8OH^-$				
11.	For a first order reaction				
	$A \longrightarrow P$				
		and 20 min is 0.04 M and 0.03 M respectively calculate $t_{\rm I/2}$ in minute.			
	(Given : log 2 = 0.3, log 3 = 0.4	48)			
Ans.	(24)				
Sol.	$K = \frac{2.303}{t} \log \frac{[A_0]}{[A_1]}$				
001.	$t = t [A_t]$				
	$\frac{0.693}{t_{1/2}} = \frac{2.303}{10} \log \frac{[A_o]}{0.04}$	(4)			
	$\frac{1}{t_{1/2}} = \frac{10}{10} 1000000000000000000000000000000000000$	(1)			
	0.693 2.303 [A _o]				
	$\frac{0.693}{t_{1/2}} = \frac{2.303}{20} \log \frac{[A_0]}{0.03}$				
	on solving				
	$\frac{0.693}{t_{1/2}} = \frac{2.303}{10} \log \frac{0.04}{0.03}$				
	$t_{1/2} = 24 \text{ min}$				
	112 - 24 11111				
12.	250 mL solution of CH ₃ COON	a of molarity 0.35 M is prepared. What is mass of CH ₃ COONa required in			
	gram (nearest integer) ? [Molar mass of CH ₃ COONa = 82.08 g/mol]				
Ans.	(7)				
	(*)				

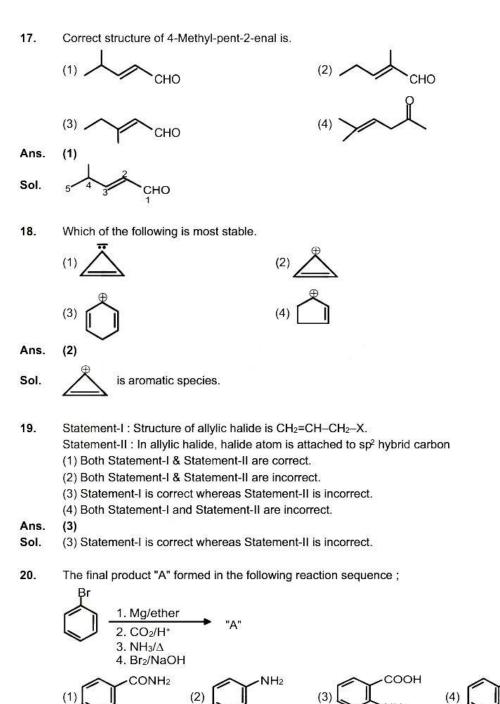
Sol. Molarity = $\frac{\text{moles of solute}}{\text{Volume (lit) of solution}}$ $0.35 = \frac{\text{moles}}{250/1000}$ moles = $0.35 \times \frac{1}{4} = 0.0875$ mass of CH₃COONa = $0.0875 \times 82.08 = 7.18 \text{ g}$ **13.** The number of atom in silver plate having area 0.05 cm^2 and thickness 0.05 cm is _____ × 10^{19} . [Given density of Ag = 7.9 gram/cm³ and atomic mass of Ag = 108]

Ans. (11)

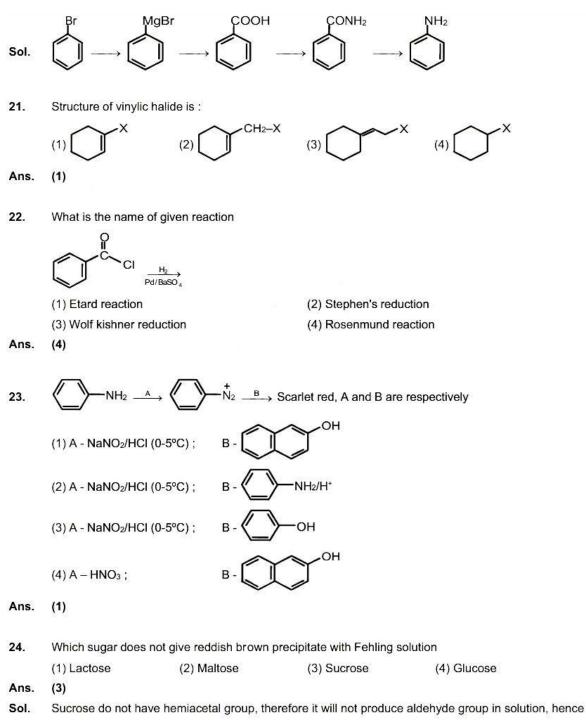

- Sol. Density = $\frac{\text{mass}}{\text{volume}}$ mass of Ag deposited = density × volume = 7.9 × [0.05 × 0.05] gram = 0.01975 gram No. of mole of Ag deposited = $\left(\frac{197.5 \times 10^{-4}}{108}\right)$ = 1.83 × 10⁻⁴ No. of Ag atom = [1.83 × 10⁻⁴] × 6.02 × 10²³ = 11.01 × 10¹⁹ atom
- 14. The element with IUPAC name 'unununnium' belongs to _____group of the periodic table.

Ans. (11)

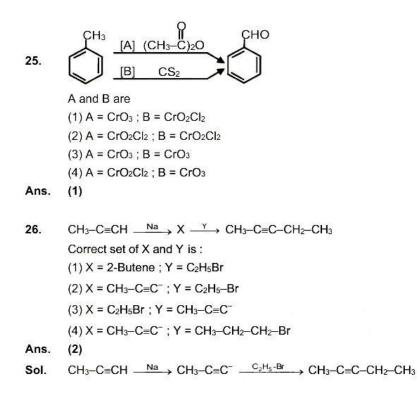
- Sol. Unununnium—111 (Uuu) Electronic configuration : [[₈₆Rn] 5f¹⁴, 6d¹⁰ 7s¹ This element belongs to d-block, 7th period and 11th group
- 15. Given K_{sp} of Mg(OH)₂ is 10⁻¹¹ and [Mg⁺²] is 0.1 M, then find pH at which precipitation will start?
- Ans. (9)


Sol.

- $$\begin{split} & K_{sp} = 10^{-11} = [Mg^{+2}] \ [OH^{-}]^2 \\ or & 10^{-11} = [0.1] \ [OH^{-}]^2 \\ or & [OH^{-}] = 10^{-5} \\ or & pOH = 5 \ or \ pH = 9 \end{split}$$
- 16. Find work done in the following cyclic process (in J)



Ans. (200)


Sol.
$$W = \frac{1}{2} \times base \times height$$

= $\frac{1}{2} \times 20 \times 10^3 \times 20 \times (10^{-1} \text{ m})^3$
= 200 J.

Ans. (2)

no precipitate with Fehling solution.

27. Calculate R_f value, if solute travelled by 3.5 cm and solvent travelled by 0.5 cm.

Ans.

7

Sol. Rr i.e. retention factor is the ratio of the distance travelled by the compound as compared to the distance moved by the solvent

 $R_{f} = \frac{\text{Distance by solute}}{\text{Distance by solvent}} = \frac{3.5}{0.5} = 7$