MEASURE-MENTS

there are seven fundamental and two supplementary quantities and their corresponding units are:

Quantity	Unit	Symbol
1. Length	metre	m
2. Mass	kilogram	kg
3. Time	second	S
4. Electric current	ampere	A
5. Temperature	kelvin	K
6. Luminous intensity	candela	cd
7. Amount of substance	mole	mol
Supplementary		
1. Plane angle	radian	rad
2. Solid angle	steradian	sr

- Dimensions: These are the powers to which the fundamental units are raised to get the unit of a physical quantity.
- Uses of dimensions
 - To check the correctness of a physical relation.
 - To derive relationship between different physical quantities.
 - (iii) To convert one system of unit into another.

$$n_1 u_1 = n_2 u_2$$

$$n_1[M_1^aL_1^bT_1^c] = n_2[M_2^aL_2^bT_2^c]$$

- Significant figures: In any measurement, the reliable digits plus the first uncertain digit are known as significant figures.
- Error: It is the difference between the measured value and true value of a physical quantity or the uncertainty in the measurements.
- Absolute error: The magnitude of the difference between the 0 true value and the measured value is called absolute error.

$$\Delta a_1 = \ddot{\mathbf{a}} - a_1$$
, $\Delta a_2 = \ddot{\mathbf{a}} - a_2$, $\Delta a_n = \ddot{\mathbf{a}} - a_n$

Mean absolute error

$$\Delta \mathbf{a} = \frac{|\Delta a_1| + |\Delta a_2| + \dots + |\Delta a_n|}{n} = \frac{1}{n} \sum_{i=1}^{n} |\Delta a_i|$$

Relative error: It is the ratio of the mean absolute error to its true value

or relative error
$$=\frac{\Delta \bar{a}}{a}$$

MOTION IN A STRAIGHT LINE

- Average speed, $V_{av} = \frac{s_1 + s_2 + s_3}{t_1 + t_2 + t_3}$ Average acceleration, $a_{av} = \frac{a_1t_1 + a_2t_2}{t_1 + t_2}$
- The area under the velocity-time curve is equal to the displacement and slope gives acceleration.

If a body falls freely, the distance covered by it in each subsequent second starting from first second will be in the ratio 1:3:5:7 etc.

- If a body is thrown vertically up with an initial velocity u, it takes u/g second to reach maximum height and u/g second to return, if air resistance is negligible.
- If air resistance acting on a body is considered, the time taken by the body to reach maximum height is less than the time to fall back the same height.
- For a particle having zero initial velocity if $s \propto t^{\alpha}$, where $\alpha > 2$, then particle's acceleration increases with time.
- For a particle having zero initial velocity if $s \propto t^{\alpha}$, where $\alpha < 0$, then particle's acceleration decreases with time.
- Kinematic equations: $v = u + a_t(t)$; $v^2 = u^2 + 2a_t(s)$ $S = ut + \frac{1}{2}a_t(t)^2$; $S_n = u + \frac{a}{2}(2n-1)$

applicable only when $|\vec{a}_t| = a_t$ is constant.

- a_t = magnitude of tangential acceleration, S = distance If acceleration is variable use calculus approach.
- Relative velocity : $\vec{v}_{BA} = \vec{v}_B \vec{v}_A$

PLANE

If T is the time of flight, h maximum height, R horizontal range of a projectile, \alpha its angle of projection, then the relations among these quantities.

MOTION IN A PLANE
$$h = \frac{gT^2}{8} \qquad(1);$$

$$gT^2 = 2R \tan \alpha$$
(2);
 $R \tan \alpha = 4h$ (3)

$$T = \frac{2u\sin\theta}{g}; h = \frac{u^2\sin^2\theta}{2g}$$

$$R = \frac{u^2 \sin 2\theta}{g}$$
; $R_{\text{max}} = \frac{u^2}{g}$ when $\theta = 45^{\circ}$

- For a given initial velocity, to get the same horizontal range, there are two angles of projection α and $90^{\circ} \alpha$.
- The equation to the parabola traced by a body projected horizontally from the top of a tower of height y, with a velocity u is $y = gx^2/2u^2$, where x is the horizontal distance covered by it from the foot of the tower.
- Equation of trajectory is $y = x \tan \theta \frac{gx^2}{2u^2 \cos^2 \theta}$, which is
- Equation of trajectory of an oblique projectile in terms of range (R) is $y = x \tan \theta \left(1 \frac{x}{D}\right)$
- Maximum height is equal to n times the range when the projectile is launched at an angle $\theta = \tan^{-1}(4n)$.
- In a uniform circular motion, velocity and acceleration are constants only in magnitude. Their directions change.
- In a uniform circular motion, the kinetic energy of the body is a constant. W = 0, $\vec{a} \neq 0$, $\vec{P} \neq \text{constant}$, $\vec{L} = \text{constant}$
- Centripetal acceleration, $a_r = \omega^2 r = \frac{v^2}{r} = \omega v$ (always applicable)

$$\vec{a}_r = \vec{\omega} \times \vec{v}$$

LAWS OF

- Newton's first law of motion or law of inertia: It is resistance to change.
- Newton's second law $\vec{F} = m\vec{a}$, $\vec{F} = d\vec{p}/dt$
- Impulse: $\Delta \vec{p} = \vec{F} \Delta t$, $p_2 p_1 = \int_1^2 F dt$
- Newton's third law: $\vec{F}_{12} = -\vec{F}_{21}$
- Frictional force $f_s \le (f_s)_{max} = \mu_s R$; $f_k = \mu_k R$
- Circular motion with variable speed. For complete circles, the string must be taut in the highest position, $u^2 \ge 5ga$. Circular motion ceases at the instant when the string becomes slack, i.e., when T=0, range of values of u for which the string does go slack is $\sqrt{2ga} < u < \sqrt{5ga}$.
- Conical pendulum : $\omega = \sqrt{g/h}$ where h is height of a point of suspension from the centre of circular motion.

The acceleration of a lift

mass

If 'a' is positive lift is moving down, and if it is negative the lift is moving up.

On a banked road, the maximum permissible speed V_{max}

$$= \left(R_g \frac{u_s + \tan \theta}{1 - u_s \tan \theta} \right)^{1/2}$$

Work done $W = FS \cos\theta$

Relation between kinetic energy E and momentum, $P = \sqrt{2mE}$

 $K.E. = \frac{1}{2} mV^2$; P.E. = mgh

- If a body moves with constant power, its velocity (v) is related to distance travelled (x) by the formula $v \propto x^{3/2}$.
- Power $P = \frac{W}{t} = F.V$

WORK,

ENERGY AND

POWER

- Work due to kinetic force of friction between two contact surfaces is always negative. It depends on relative displacement between contact surfaces. $W_{FK} = -F_K(S_{rel})$.
- Σ W = Σ Δ K, Σ W \Rightarrow total work due to all kinds of forces, Σ Δ K \Rightarrow total change in kinetic energy.
- $\Sigma W_{conservative} = -\Sigma \Delta U$; $\Sigma W_{conservative} \Rightarrow$ Total work due to all kinds of conservative forces. $\Sigma \Delta u \Rightarrow$ Total change in all kinds of potential energy.
- Coefficient of restitution $e = \frac{\text{velocity of separation}}{\text{velocity of approach}}$
- The total momentum of a system of particles is a constant in the absence of external forces.

The centre of mass of a system of particles is defined as the point whose

SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

position vector is $R = \frac{\sum m_i r_i}{M}$

The angular momentum of a system of n

particles about the origin is $L = \sum_{i=1}^{n} r_i \times p_i$;

 $L = mvr = I\omega$

- The torque or moment of force on a system of n particles about the origin is $\tau = \sum r_i \times F_i$
- The moment of inertia of i rigid body about an axis is defined by the formula $I = \sum m_{i} r_{i}^{2}$
- The kinetic energy of rotation is $K = \frac{1}{2}I\omega^2$
- The theorem of parallel axes: $I_z = I_z + Ma^2$ Theorem of perpendicular axes: $I_z = I_x + I_y$

For rolling motion without slipping $v_{cm} = R\omega$. The kinetic energy of such a rolling body is the sum of kinetic energies

of translation and rotation : $K = \frac{1}{2}mv_{cm}^2 + \frac{1}{2}I\omega^2$

- A rigid body is in mechanical equilibrium if
 - (a) It is translational equilibrium i.e., the total external force on it is zero : $\Sigma F_i = 0$.
 - (b) It is rotational equilibrium i.e., the total external torque
- on it is zero : $\Sigma \tau_i = \Sigma r_i \times F_i = 0$. If a body is released from rest on rough inclined plane, then

for pure rolling $\mu_r \ge \frac{n}{n+1} \tan \theta \ (I_c = nmr^2)$

Rolling with sliding $0 < \mu_s < \left(\frac{n}{n+1}\right) \tan \theta$;

 $\frac{g\sin\theta}{n+1} < a < g\sin\theta$

GRAVITATION

Newton's universal law of gravitation

Gravitational force $F = \frac{Gm_1m_2}{r^2}$

 $G = 6.67 \times 10^{-11} \frac{Nm^2}{kg^2}$

The acceleration due to gravity.
(a) at a height h above the Earth's surface

 $g(h) = \frac{GM_E}{(R_E + h)^2} = g\left(1 - \frac{2h}{R_E}\right) \text{ for } h << R_E$

$$g(h) = g(0) \left(1 - \frac{2h}{R_E} \right) \text{ where } g(0) = \frac{GM_E}{R_E^2}$$

(b) at depth d below the Earth's surface is

 $g(d) = \frac{GM_E}{R_E^2} \left(1 - \frac{d}{R_E} \right) = g(0) \left(1 - \frac{d}{R_E} \right)$

- (c) with latitude λ $g^1 = g R\omega^2 \cos^2 \lambda$
- Gravitational potential $V_g = -\frac{GM}{r}$
- Intensity of gravitational field $I = \frac{GM}{r^2}$
- The gravitational potential energy

 $V = -\frac{Gm_1m_2}{r} + constant$

- The escape speed from the surface of the Earth is $v_e = \sqrt{\frac{2GM_E}{R_E}} = \sqrt{2gR_E}$ and has a value of 11.2 km s⁻¹.
- Orbital velocity, $v_{orbi} = \sqrt{\frac{GM_E}{R_E}} = \sqrt{gR_E}$
- A geostationary (geosynchronous communication) satellite moves in a circular orbit in the equatorial plane at a approximate distance of 4.22×10^4 km from the Earth's centre.

Kepler's 3rd law of planetary motion.

 $T^2 \propto a^3$; $\frac{T_1^2}{T^2} = \frac{a_1^3}{a^3}$

- Hooke's law: stress ∞ strain
- Young's modulus of elasticity

MECHANICAL PROPERTIES OF SOLIDS

- Compressibility = $\frac{1}{\text{Bulk modulus}}$
- $Y = 2n(1+\sigma)$
- If S is the stress and Y is Young's modulus, the energy density of the wire E is equal to $S^2/2Y$.
- If α is the longitudinal strain and E is the energy density of a stretched wire, Y Young's modulus of wire, then E is equal

to $\frac{1}{2} Y \alpha^2$

MECHANICAL

PROPERTIES

OF FLUIDS

Thermal stress = $\frac{F}{A} = Y \alpha \Delta \theta$

Pascal's law : A change in pressure applied to an enclosed fluid is transmitted undiminished to every point of the fluid and the walls of the containing vessel.

Pressure exerted by a liquid column $P = h\rho g$

Bernoulli's principle

 $P + \rho v^2/2 + \rho gh = constant$

- Surface tension is a force per unit length (or surface energy per unit area) acting in the plane of interface.
- Stokes' law states that the viscous drag force F on a sphere of radius a moving with velocity v through a fluid of viscosity n
- Terminal velocity $V_T = \frac{2}{9} \frac{r^2 (\rho \sigma)g}{\eta}$
- The surface tension of a liquid is zero at boiling point. The surface tension is zero at critical temperature.
- If a drop of water of radius R is broken into n identical drops, the work done in the process is $4\pi R^2 S(n^{1/3} - 1)$ and fall in

temperature $\Delta q = \frac{3T}{I} \sqrt{\frac{1}{r} - \frac{1}{R}}$

- Two capillary tubes each of radius r are joined in parallel. The rate of flow is Q. If they are replaced by single capillary tube of radius R for the same rate of flow, then $R = 2^{1/4} r$.
- Ascent of a liquid column in a capillary tube $h = \frac{2s \cos \phi}{rog}$
- Coefficient of viscosity, $n = -\frac{F}{A\left(\frac{dv}{a}\right)}$
- Velocity of efflux $V = \sqrt{2gh}$

THERMAL PROPERTIES OF MATTER

Relation between different temperature

$$\frac{C}{100} = \frac{F - 32}{100} = \frac{K - 273}{100}$$

ightharpoonup The coefficient of linear expansion (α_a), superficial (β) and volume expansion (α_{ij}) are defined by the relations:

$$\frac{\Delta \ell}{\ell} = \alpha_\ell \Delta T \ ; \ \frac{\Delta A}{A} = \beta \Delta T \ ; \ \frac{\Delta V}{V} = \alpha_V \Delta T$$

$$\alpha_{\rm v} = 3\alpha_{\ell}$$
; $\beta = 2\alpha_{\ell}$

In conduction, heat is transferred between neighbouring parts of a body through molecular collisions, without any

flow of matter. The rate of flow of heat $H = KA \frac{T_C - T_D}{L}$,

- where K is the thermal conductivity of the material of the bar. Convection involves flow of matter within a fluid due to unequal temperatures of its parts.
- Radiation is the transmission of heat as electromagnetic
- Stefan's law of radiation : $E = \sigma T^4$, where the constant σ is known as Stefan's constant = 5.67×10^{-8} wm⁻² k⁻⁴.
- Wein's displacement law: $\lambda_m T = \text{constant}$, where constant is known as Wein's constant = 2.898×10^{-3} mk.
- Newton's law of cooling: $\frac{dQ}{dt} = -k (T_2 T_1)$; where T_1 is the temperature of the surrounding medium and T₂ is the temperature of the body.
- Heat required to change the temperature of the substance. $O = mc\Delta\theta$
 - c =specific heat of the substance
- Heat absorbed or released during state change Q = mLL = latent heat of the substance

- Mayer's formula $c_p c_y = R$ First law of thermodynamics: $\Delta Q = \Delta U$ $+\Delta W$, where ΔQ is the heat supplied to the system, ΔW is the work done by the system and ΔU is the change in internal energy of
 - In an isothermal expansion of an ideal gas from volume V_1 to V_2 at temperature T the heat absorbed (Q) equals the work done (W) by the gas, each given by

$$Q = W = nRT ln \left(\frac{V_2}{V_1}\right)$$

In an adiabatic process of an ideal gas $PV^{\gamma} = TV^{\gamma-1}$

$$= \frac{T^{\gamma}}{P^{\gamma - 1}} = \text{constant, where } \gamma = \frac{C_p}{C_v}.$$

Work done by an ideal gas in an adiabatic change of state

from
$$(P_1, V_1, T_1)$$
 to (P_2, V_2, T_2) is $W = \frac{nR(T_1 - T_2)}{\gamma - 1}$

The efficiency of a Carnot engine is given by

$$\eta = 1 - \frac{T_2}{T_1}$$

- Second law of thermodynamics: No engine operating between two temperatures can have efficiency greater than that of the Carnot engine.
- Entropy or disorder $S = \frac{\delta Q}{T}$
 - Ideal gas equation PV = nRT Kinetic theory of an ideal gas gives

KINETIC THEORY the relation $P = \frac{1}{3} nm \overline{v}^2$, Combined with the ideal gas equation it yields a kinetic interpretation of temperature.

$$\frac{1}{2}nm\overline{v}^2=\frac{3}{2}k_BT$$
 , $v_{rms}=(\overline{v}^2)^{1/2}=\sqrt{\frac{3k_BT}{m}}$

- The law of equipartition of energy is stated thus: the energy for each degree of freedom in thermal equilibrium is 1/2 (k_BT)
- The translational kinetic energy $E = \frac{3}{2}k_BNT$. This leads to a relation $PV = \frac{2}{3}E$.
- Degree of freedom: Number of directions in which it can move freely.
- Root mean square (rms) velocity of the gas

$$C = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3P}{\rho}}$$

- Most probable speed $V_{mp} = \sqrt{\frac{2RT}{M}} = \sqrt{\frac{2KT}{m}}$
- Mean free path $\lambda = \frac{KT}{\sqrt{2}\pi d^2 P}$

- Displacement in SHM: Y = a sin ωt or, $y = a \cos \omega t$
- The particle velocity and acceleration during SHM as functions of time are given

v (t) =
$$-\omega A \sin(\omega + \phi)$$
 (velocity),
a (t) = $-\omega^2 A \cos(\omega t + \phi) = -\omega^2 x$ (t)
(acceleration)

Velocity amplitude $v_m = \omega A$ and acceleration amplitude $a_m = \omega^2 A$.

A particle of mass m oscillating under the influence of a Hooke's law restoring force given by F = -k x exhibits simple

harmonic motion with $\omega = \sqrt{\frac{k}{m}}$ (angular frequency),

$$T = 2\pi \sqrt{\frac{m}{k}} \text{ (period)}$$

Such a system is also called a linear oscillator.

- Time period for conical pendulum $T = 2\pi \sqrt{\frac{\ell \cos \theta}{\sigma}}$ where θ angle between string & vertical.
- Energy of the particle $E = k + u = \frac{1}{2}m\omega^2 A^2$

WAVES

The displacement in a sinusoidal wave y $(x, t) = a \sin(kx - \omega t + \phi)$ where ϕ is the phase constant or phase angle.

Equation of plane progressive wave :

$$= a \sin 2\pi \left(\frac{t}{T} - \frac{x}{V}\right)$$

Equation of stationary wave :

$$Y = 2a \sin \frac{2\pi t}{T} \cos \frac{2\pi x}{\lambda}$$

- The speed of a transverse wave on a stretched string $v = \sqrt{T/\mu}$.
- Sound waves are longitudinal mechanical waves that can travel through solids, liquids, or gases. The speed v of sound wave in a fluid having bulk modulus B and density μ is $v = \sqrt{B/\rho}$.
- The speed of longitudinal waves in a metallic bar is $v = \sqrt{Y/\rho}$

For gases, since B = γ P, the speed of sound is $v = \sqrt{\gamma P/\rho}$

- The interference of two identical waves moving in opposite directions produces standing waves. For a string with fixed ends, standing wave $y(x, t) = [2a \sin kx] \cos \omega t$
- The separation between two consecutive nodes or antinodes is $\lambda/2$.
- A stretched string of length L fixed at both the ends vibrates with frequencies $f = \frac{1}{2} \frac{v}{2L}$.

The oscillation mode with lowest frequency is called the fundamental mode or the first harmonic.

A pipe of length L with one end closed and other end open (such as air columns) vibrates with frequencies given by

$$f = \left(n + \frac{1}{2}\right) \frac{v}{2L}, n = 0, 1, 2, 3,$$

The lowest frequency given by v/4L is the fundamental mode or the first harmonic.

Open organ pipe $n_1 : n_2 : n_3 1, 2, 3......, n = \frac{V}{2I}$

- Beats arise when two waves having slightly different frequencies, f_1 and f_2 and comparable amplitudes, are superposed. The beat frequency $f_{beat} = f_1 f_2$
- The Doppler effect is a change in the observed frequency of a wave when the source S and the observer O moves relative

ELECTRO-STATICS to the medium. $f = f_0 \left(\frac{v \pm v_0}{v \pm v_s} \right)$

Coulomb's Law: \vec{F}_{21} = force on q_2

due to
$$q_1 = \frac{k (q_1 q_2)}{r_{21}^2} \hat{r}_{21}$$
 where $k = \frac{1}{4\pi\epsilon_0}$
= $9 \times 10^9 \text{ Nm}^2 \text{ C}^{-2}$

- Electric field due to a point charge q has a magnitude $|\mathbf{q}|/4\pi\epsilon_0 \mathbf{r}^2$
- Field of an electric dipole in its equatorial plane

$$E = \frac{-\vec{p}}{4\pi\epsilon_0} \frac{1}{(a^2 + r^2)^{3/2}} \approx \frac{-\vec{p}}{4\pi\epsilon_0 r^3}, \quad \text{for } r >> \epsilon$$

Dipole electric field on the axis at a distance r from the centre:

$$\vec{E} = \frac{2\vec{p}r}{4\pi\epsilon_0(r^2 - a^2)^2} \cong \frac{2\vec{p}}{4\pi\epsilon_0 r^3} \text{ for } r >> a$$

Dipole moment $\vec{p} = q2a$

In a uniform electric field \vec{E} , a dipole experiences a torque $\vec{\tau}$ given by $\vec{\tau} = \vec{p} \times \vec{E}$ but experiences no net force. The flux $\Delta \phi$ of electric field \vec{E} through a small area element

 $\Delta \vec{S}$ is given by $\Delta \phi = \vec{E} \cdot \Delta \vec{S}$

- Gauss's law: The flux of electric field through any closed surface S is $1/\epsilon_0$ times the total charge enclosed i.e., Q
- Thin infinitely long straight wire of uniform linear charge density λ : $\vec{E} = \frac{\lambda}{2\pi\epsilon_0 r} \hat{n}$
- Infinite thin plane sheet of uniform surface charge density σ

$$\vec{E} = \frac{\sigma}{2\epsilon_0} \hat{n}$$

Thin spherical shell of uniform surface charge density σ :

$$\vec{E} = \frac{\sigma}{4\pi\epsilon_0 r^2} \hat{r} \qquad (r \ge R) \; ; \; \vec{E} = 0 \; (r \le R)$$

- Electric Potential: $V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$.
- An equipotential surface is a surface over which potential has a constant value.
- Potential energy of two charges q_1, q_2 at \vec{r}_1, \vec{r}_2 is given by

$$U=\frac{1}{4\pi\epsilon_0}\frac{q_1q_2}{r_{12}}$$
 , where r_{12} is distance between q_1 and $q_2.$

- Capacitance C = Q/V, where Q = charge and V = potential difference
- For a parallel plate capacitor (with vacuum between the plates), $C = \varepsilon_0 \frac{A}{d}$.
- The energy U stored in a capacitor of capacitance C, with charge Q and voltage V is

$$U = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$$

For capacitors in the series combination,

$$\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$

In the parallel combination, $C_{eq} = C_1 + C_2 + C_3 + ...$ where C_1 , C_2 , C_3 ... are individual capacitances.

- \bigcirc Electric current, $I = \frac{q}{t}$
- Current density j gives the amount of charge flowing per second per unit area normal to the flow, $\vec{J} = nqv_d$
- Mobility, $\mu = \frac{V_d}{E}$ and $V_d = \frac{I}{Ane}$
- Resistance $R = \rho \frac{\ell}{A}$, $\rho = resistivity of the material$
- Equation $\vec{E} = \rho \vec{J}$ another statement of Ohm's law, ρ = resistivity of the material.
- Ohm's law $I \propto V$ or V = RI
- (a) Total resistance R of n resistors connected in series $R = R_1 + R_2 + + R_n$
 - $R = R_1 + R_2 + \dots + R_n$ (b) Total resistance R of n resistors connected in parallel

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$
.

- Kirchhoff's Rules (a) Junction rule: At any junction of circuit elements, the sum of currents entering the junction must equal the sum of currents leaving it.
 - (b) Loop rule: The algebraic sum of changes in potential around any closed loop must be zero.
- The Wheatstone bridge is an arrangement of four resistances R_1 , R_2 , R_3 , R_4 . The null-point condition is given by $\frac{R_1}{R_2} = \frac{R_3}{R_4}$
- The potentiometer is a device to compare potential differences. The device can be used to measure potential difference; internal resistance of a cell and compare emf's of

two sources. Internal resistance $r = R\left(\frac{\ell_1}{\ell_2} - 1\right)$

- RC circuit: During charging: $q = CE(1 e^{-t/RC})$ During discharging: $q = q_0e^{-t/RC}$
- According 'to Joule's Heating law, $H = I^2Rt$

- The total force on a charge q moving with velocity v i.e., Lorentz force. $\vec{F} = q(\vec{v} \times \vec{B} + \vec{E})$.
- A straight conductor of length ℓ and carrying a steady current I experiences a force \vec{F} in a uniform external magnetic field

 $B\,,\,\,\vec{F}=\vec{I\ell}\times\vec{B}\,,$ the direction of ℓ is given by the direction of the current.

- Biot-Savart law $d\vec{B} = \frac{\mu_0}{4\pi} I \frac{d\vec{\ell} \times \vec{r}}{r^3}$.
- The magnitude of the magnetic field due to a circular coil of radius R carrying a current I at an axial distance x from the centre is $B = \frac{\mu_0 IR^2}{2(x^2 + R^2)^{3/2}}$.

- The magnitude of the field B inside a long solenoid carrying a current I is: $B = \mu_0 nI$. For a toroid one obtains, $B = \frac{\mu_0 nI}{2\pi r}$.
- Ampere's Circuital Law: $\oint_C \vec{B}.d\vec{\ell} = \mu_0 I$, where I refers to the current passing through S.
- Force between two long parallel wires $F = \frac{\mu_0 I_1 I_2}{2\pi a} Nm^{-1}$. The force is attractive if currents are in the same direction and repulsive currents are in the opposite direction.
- For current carrying coil $\vec{M} = NI\vec{A}$; torque = $\vec{\tau} = \vec{M} \times \vec{B}$
- Conversion of (i) galvanometer into ammeter, $S = \left(\frac{I_g}{I I_g}\right)G$
 - (ii) galvanometer into voltmeter, $S = \frac{V}{I_g} G$
- The magnetic intensity, $\vec{H} = \frac{\vec{B}_0}{\mu_0}$.
- The magnetisation \vec{M} of the material is its dipole moment per unit volume. The magnetic field B in the material is, $\vec{B} = \mu_0(\vec{H} + \vec{M})$
- For a linear material $\vec{M} = \chi \vec{H}$. So that $\vec{B} = \mu \vec{H}$ and χ is called the magnetic susceptibility of the material.

$$\mu = u_0 \mu_r \ ; \ \mu_r = 1 + \chi \ . \label{eq:mu_nu_r}$$

The magnetic flux

 $\phi_B = \vec{B}.\vec{A} = BA\,\cos\theta$, where θ is the angle

between \vec{B} & \vec{A} .

Solution Faraday's laws of induction:

MAGNETIC Fars

ELECTRO-

- $\varepsilon = -N \frac{d\phi_B}{dt}$ Lenz's law states that the polarity of
- the induced emf is such that it tends to produce a current which opposes the change in magnetic flux that produces it.
- The induced emf (motional emf) across ends of a rod $\epsilon = B\ell v$
- The self-induced emf is given by, $\varepsilon = -L \frac{dI}{dt}$ L is the self-inductance of the coil.

$$L = \frac{\mu_0 N^2 A}{\ell}$$

- A changing current in a coil (coil 2) can induce an emf in a nearby coil (coil 1).
 - $\epsilon_1 = -M_{12} \, \frac{dI_2}{dt}$, M_{12} = mutual inductance of coil 1 w.r.t coil 2.

$$M = \frac{\mu_0 N_1 N_2 A}{\ell}$$

Growth of current in an inductor, $i = i_0[1 - e^{-Rt/L}]$ For decay of current, $i = i_0e^{-Rt/L}$

ALTERNATING CURRENT

For an alternating current $i = i_m \sin \omega t$ passing through a resistor R, the average power loss P (averaged over a cycle) due to joule heating is $(1/2)i_m^2R$.

E.m.f, $E = E_0 \sin \omega t$

Noot mean square (rms) current

$$I = \frac{i_m}{\sqrt{2}} = 0.707 i_m$$
. $E_{rms} = \frac{E_0}{\sqrt{2}}$

- The average power loss over a complete cycle $P = V I \cos \phi$. The term $\cos \phi$ is called the power factor.
- An ac voltage $v = v_m \sin \omega t$ applied to a pure inductor L, drives a current in the inductor $i = i_m \sin (\omega t \pi/2)$, where $i_m = v_m/X_L$. $X_L = \omega L$ is called inductive reactance.
- An ac voltage $v = v_m \sin \omega t$ applied to a capacitor drives a current in the capacitor: $i = i_m \sin (\omega t + \pi/2)$. Here,

$$i_m = \frac{v_m}{X_C}$$
, $X_C = \frac{1}{\omega C}$ is called capacitive reactance.

An interesting characteristic of a series RLC circuit is the phenomenon of resonance. The circuit exhibits resonance, i.e., the amplitude of the current is maximum at the resonant

frequency,
$$\omega_0 = \frac{1}{\sqrt{LC}} \left(X_L = X_C \right)$$
.

- Impedance $z = \sqrt{R^2 + (x_L x_C)^2}$
- $\sum \quad \text{Step up transformer} : N_S > N_P; E_S > E_P; I_P > I_S$
- Step down transformer $N_p > N_S$; $E_p > E_S$ and $I_p < I_S$
- The quality factor Q defined by $Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$ is an

indicator of the sharpness of the resonance, the higher value of Q indicating sharper peak in the current.

Reflection is governed by the equation \angle i = \angle r' and refraction by the Snell's law, $\sin i / \sin r = n$, where the incident ray, reflected ray, refracted ray and normal lie in the same plane.

 \bigcirc Mirror equation: $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$

Magnification M = $\frac{V}{u} = \frac{I}{O}$

- Prism Formula $n_{21} = \frac{n_2}{n_1} = \frac{\sin [(A + D_m)/2)]}{\sin (A/2)}$, where D_m is the angle of minimum deviation.
- Dispersion is the splitting of light into its constituent colours. The deviation is maximum for violet and minimum for red.
- \bigcirc Scattering $\propto \frac{1}{\lambda^4}$

- Dispersive power $\omega = \frac{\delta_v \delta_r}{\delta}$, where δ_v , δ_r are deviation of violet and red and δ the deviation of mean ray (usually yellow).
- For refraction through a spherical interface (from medium 1 to 2 of refractive index n_1 and n_2 , respectively)

$$\frac{n_2}{v} - \frac{n_1}{v} = \frac{n_2 - n_1}{R}$$

Refractive index of a medium $\mu = \frac{C}{V}$ (C = 3 × 10⁸ m/s)

$$r = \frac{1}{\sin C}$$
 (C=Critical angle)

- Condition for TIR: 1. Ray of light must travel from denser to rarer medium 2. Angle of incidence in denser medium > critical angle.
- Lens formula $\frac{1}{v} \frac{1}{u} = \frac{1}{f}$
- Lens maker's formula: $\frac{1}{f} = \frac{(n_2 n_1)}{n_1} \left(\frac{1}{R_1} \frac{1}{R_2} \right)$
- The power of a lens P = 1/f. The SI unit for power of a lens is dioptre (D): $1 D = 1 m^{-1}$.
- If several thin lenses of focal length f_1 , f_2 , f_3 ,... are in contact, the effective focal $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3} + \dots$
- The total power of a combination of several lenses $P = P_1 + P_2 + P_3 + \dots$
- Chromatic aberration if satisfying the equation

$$\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0 \quad \text{or in terms of powers} \ \ \omega_1 P_1 + \omega_2 P_2 = 0 \ .$$

 $\text{For compound microscope } M = \frac{V_0}{u_0} \left(1 + \frac{D}{f_e} \right)$

when final image at D

$$M = \frac{V_0}{u_0} \cdot \frac{D}{f_e}$$
 when final image at infinity.

- Wavefront: It is the locus of all the particles vibrating in the same phase.
- The resultant intensity of two waves of intensity $I_0/4$ of phase difference ϕ at any

points
$$I = I_0 \cos^2 \left[\frac{\phi}{2} \right]$$
,

where I_0 is the maximum density.

- Intensity I \propto (amplitude)²
- Condition for dark band : $\delta = (2n-1)\frac{\lambda}{2}$, for bright band : $\delta = m\lambda$

- Fringe width $\beta = \frac{D\lambda}{d}$
- A thin film of thickness t and refractive index μ appears dark by reflection when viewed at an angle of refraction r if

$$2\mu t \cos r = n\lambda (n = 1, 2, 3, etc.)$$

- A single slit of width a gives a diffraction pattern with a central maximum. The intensity falls to zero at angles of $\pm \frac{\lambda}{a}, \pm \frac{2\lambda}{a}$, etc.
- Amplitude of resultant wave R = $\sqrt{a^2 + b^2 + 2ab\cos\phi}$
- Intensity of wave $I = I_1 + I_2 + 2 \sqrt{I_1 I_2} \cos \phi$
- Brewster law: $\mu = \tan i_n$

MODERN **PHYSICS**

- Energy of a photon $E = hv = \frac{hc}{\lambda}$
- Momentum of a photon $P = \frac{h}{\lambda}$ Einstein's -1
- Einstein's photoelectric equation

$$\frac{1}{2}mv_{max}^{2} = V_{0}e = hv - \phi_{0} = h(v - v_{0})$$

- Mass defect,
 - $\Delta M = (Z m_p + (A Z) m_n) M; \quad \Delta E_b = \Delta M c^2.$
- $E_n = -\frac{Z^2}{r^2} \times 13.6 \text{eV}$ (For hydrogen like atom)
- According to Bohr's atomic model, angular momentum for the electron revolving in stationary orbit, $mvr = nh/2\pi$
- Radius of the orbit of electron $r = \frac{n^2 h^2}{4\pi^2 mkze^2}$
- Bragg's law: $2d \sin \theta = n\lambda$.
- Radius of the nucleus $R = R_o A^{1/3}$
- Law of radioactive decay: $N = N_0 e^{-\lambda t}$.

Activity =
$$\frac{dN}{N} = -\lambda N$$
 (unit is Becquerel)

- $$\begin{split} & \text{Half life period, } T_{1/2} = \frac{0.693}{\lambda} \\ & \text{Characteristics X-rays: } \lambda_{K_{\text{cl}}} < \lambda_{L_{\text{cl}}} \end{split}$$

Moseley law: $v = a (Z - b)^2$

- Pure semiconductors are called 'intrinsic semiconductors'. The presence of charge carriers (electrons and holes) number of electrons (n_e) is equal to the number of holes (n_h) .
- The number of charge carriers can be changed by 'doping' of a suitable impurity in pure semiconductors known as extrinsic semiconductors (n-type and p-type).
- In n-type semiconductors, $n_e \gg n_h$ while in p-type
- semiconductors $n_h >> n_e$. n-type semiconducting Si or Ge is obtained by doping with pentavalent atoms (donors) like As, Sb, P, etc., while p-type Si or Ge can be obtained by doping with trivalent atom (acceptors) like B, Al, In etc.

- In forward bias (n-side is connected to negative terminal of the battery and p-side is connected to the positive), the barrier is decreased while the barrier increases in reverse bias.
- Diodes can be used for rectifying an ac voltage (restricting the ac voltage to one direction).
- Zener diode is one such special purpose diode. In reverse bias, after a certain voltage, the current suddenly increases (breakdown voltage) in a Zener diode. This property has been used to obtain voltage regulation.
- The important transistor parameters for CE-configuration are:

Input resistance

Output resistance

$$r_{i} = \left(\frac{\Delta V_{BE}}{\Delta I_{B}}\right)_{V_{CE}}$$

$$r_0 = \left(\frac{\Delta V_{CE}}{\Delta I_C}\right)_{I_{R}}$$

Current amplification factor,
$$\beta = \left(\frac{\Delta I_C}{\Delta I_B}\right)_{V_{CI}}$$

The voltage gain of a transistor amplifier in common emitter configuration is:

$$A_v = \left(\frac{v_0}{v_i}\right) = \beta \frac{R_C}{R_B}$$
, where R_C and R_B are respectively the

resistances in collector and base sides of the circuit.

The important digital circuits performing special logic operations are called logic gates. These are: OR, AND, NOT, NAND, and NOR gates. NAND gate is the combination of NOT and AND gate. NOR gate is the combination of NOT and OR gate.

- Transmitter, transmission channel and receiver are three basic units of a communication system.
- Two important forms of communication system are: Analog and Digital. The information to be transmitted is generally in continuous waveform for the former while for the latter it has only discrete or quantised levels.
- Low frequencies cannot be transmitted to long distances. Therefore, they are superimposed on a high frequency carrier signal by a process known as modulation.

In the process of modulation, new frequencies called sidebands are generated on either side.

- If an antenna radiates electromagnetic waves from a height h_T , then the range $d_T \sqrt{2Rh_T}$ R = radius of earth.
- Effective range, $d = \sqrt{2Rh_T} + \sqrt{2Rh_R}$ h_T = height of transmitting antenna; h_R = height of receiving antenna
- Critical frequency $V_c = 9(N_{max})^{1/2}$ where $N_{max} = \text{no. density of electrons/m}^3$
- Skip distance, $D_{\text{skip}} = 2h \left(\frac{V_{\text{max}}}{V} \right)^2 1$

h = height of reflecting layer of atmosphere.

Power radiated by an antenna $\propto \frac{1}{\sqrt{2}}$