General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This Question Paper contains 38 questions. All questions are compulsory.
- (ii) Question Paper is divided into five Sections Section A, B, C, D and E.
- (iii) In Section A Questions no. 1 to 18 are Multiple Choice Questions (MCQs) and Questions no. 19 & 20 are Assertion-Reason based questions of 1 mark each.
- (iv) In Section B Questions no. 21 to 25 are Very Short Answer (VSA) type questions, carrying 2 marks each.
- (v) In Section C Questions no. 26 to 31 are Short Answer (SA) type questions, carrying 3 marks each.
- (vi) In Section D Questions no. 32 to 35 are Long Answer (LA) type questions, carrying 5 marks each.
- (vii) In Section E Questions no. 36 to 38 are case study based questions, carrying 4 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 3 questions in Section D and 2 questions in Section E.
- (ix) Use of calculators is not allowed.

SECTION - A

This section consists of 20 multiple choice questions of 1 mark each. $20 \times 1 = 20$

If
$$\begin{bmatrix} a & c & 0 \\ b & d & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
 is a scalar matrix, then the value of $a + 2b + 3c + 4d$ is:

(A) 0

(B) 5

(C) 10

(D) 25

Given that $A^{-1} = \frac{1}{7}\begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$, matrix A is:

(A) $7\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$

(B) 2 -1 3 2

(C) $\frac{1}{7}\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$

(D) $\frac{1}{49}\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$

3/ If $A = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix}$, then the value of $I - A + A^2 - A^3 + ...$ is:

(A) $\begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}$

(B) 3 1 -4 -1

(C) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

(D) \[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

If $A = \begin{bmatrix} -2 & 0 & 0 \\ 1 & 2 & 3 \\ 5 & 1 & -1 \end{bmatrix}$, then the value of |A| (adj. A) |A| is:

- (A) 100 I
- (C) 10

- (B) 10 I
- (D) 1000

Given that $\begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = 0$, the value of x is:

- (D) 4

Derivative of e2r with respect to ex, is:

- (A) er
- (C) 2e2x

- (B) 2e^x
- (D) 2e3x

65/4/1/21/QSS4R

Page 5 of 24

For what value of k, the function given below is continuous at x = 0?

$$f(x) = \begin{cases} \frac{\sqrt{4+x}-2}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$$

(A) 0

(C)

The value of $\int_{0}^{3} \frac{dx}{\sqrt{9-x^2}}$ is:

The general solution of the differential equation x dy + y dx = 0 is:

(A) xy = c

(B) x + y = c

(C) $x^2 + y^2 = c^2$

(D) $\log y = \log x + c$

The integrating factor of the differential equation $(x + 2y^2) \frac{dy}{dx} = y (y > 0)$ is:

(A) $\frac{1}{r}$

(B) x

(C) y

(D) 1/v

If \vec{a} and \vec{b} are two vectors such that $|\vec{a}| = 1$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{3}$, then the angle between 2 a and -b is:

(B) $\frac{\pi}{3}$ (D) $\frac{11\pi}{6}$

65/4/1/21/QSS4R

Page 7 of 24

12. The vectors $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = \hat{i} - 3\hat{j} - 5\hat{k}$ and $\vec{c} = -3\hat{i} + 4\hat{j} + 4\hat{k}$ represents the sides of

- (A) an equilateral triangle
- (B) an obtuse-angled triangle
- (C) an isosceles triangle
- (D) a right-angled triangle

13 Let \vec{a} be any vector such that $|\vec{a}| = a$. The value of

$$|\overrightarrow{a} \times \hat{i}|^2 + |\overrightarrow{a} \times \hat{j}|^2 + |\overrightarrow{a} \times \hat{k}|^2$$
 is:

(A) a2

(C) 3a2

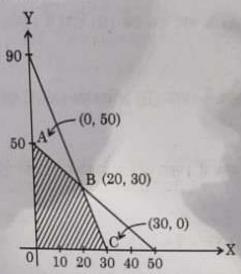
(D) 0

The vector equation of a line passing through the point (1, -1, 0) and parallel to Y-axis is:

- (A) $\vec{r} = \hat{i} \hat{j} + \lambda(\hat{i} \hat{j})$ (B) $\vec{r} = \hat{i} \hat{j} + \lambda\hat{j}$
- (C) $\vec{r} = \hat{i} \hat{j} + \lambda \hat{k}$
- (D) $\vec{r} = \lambda \hat{j}$

15. The lines $\frac{1-x}{2} = \frac{y-1}{3} = \frac{z}{1}$ and $\frac{2x-3}{2p} = \frac{y}{-1} = \frac{z-4}{7}$ are perpendicular to each other for p equal to:

(A) $-\frac{1}{2}$


(B) 1/2

(C) 2

65/4/1/21/QSS4R

Page 9 of 24

The maximum value of Z = 4x + y for a L.P.P. whose feasible region is given below is:

120 - 110

(A) 50

(B) 110

(C) 120

(D) 170

17 The probability distribution of a random variable X is :

X	.0	110000	333330		4
P(X)	0.1	k	2k	k	0.1

where k is some unknown constant.

The probability that the random variable X takes the value 2 is :

(A) $\frac{1}{5}$

(B) $\frac{2}{5}$

(C) $\frac{4}{5}$

(D) 1

18. The function $f(x) = kx - \sin x$ is strictly increasing for

(A) k>1

(B) k < 1

(C) k>-1

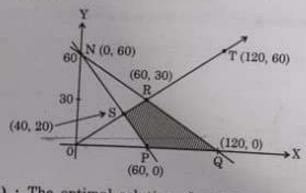
(D) k < -1

65/4/1/21/QSS4R

Page 11 of 24

ASSERTION-REASON BASED QUESTIONS

Questions No. 19 & 20, are Assertion (A) and Reason (R) based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A)


Select the correct answer from the codes (A), (B), (C) and (D) as given

- (A) Both Assertion (A) and Reason (R) are true and the Reason (R) is the correct explanation of Assertion (A).
- Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false,
- (D) Assertion (A) is false, but Reason (R) is true.

Assertion (A): The relation $R = \{(x, y) : (x + y) \text{ is a prime number and } x, y \in \mathbb{N}\}$ is not a reflexive relation.

Reason (R): The number '2n' is composite for all natural numbers n.

29. Assertion (A): The corner points of the bounded feasible region of a L.P.P. are shown below. The maximum value of Z = x + 2y occurs at infinite points.

Reason (R): The optimal solution of a LPP having bounded feasible region must occur at corner points.

65/4/1/21/QSS4R

Page 13 of 24

SECTION - B

In this section there are 5 very short answer type questions of 2 marks each.

21. (a) Express $\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right)$, where $\frac{-\pi}{2} < x < \frac{\pi}{2}$ in the simplest form.

OR

- (b) Find the principal value of $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$.
- 22. (a) If $y = \cos^3(\sec^2 2t)$, find $\frac{dy}{dt}$.

OR

- (b) If $x^y = e^{x-y}$, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.
- 23. Find the interval in which the function $f(x) = x^4 4x^3 + 10$ is strictly decreasing.
- 24. The volume of a cube is increasing at the rate of 6 cm³/s. How fast is the surface area of cube increasing, when the length of an edge is 8 cm?

25. Find:
$$\int \frac{1}{x(x^2-1)} dx$$
.

SECTION - C

In this section there are 6 short answer type questions of 3 marks each.

26. Given that
$$y = (\sin x)^x \cdot x^{\sin x} + a^x$$
, find $\frac{dy}{dx}$.

27/ (a) Evaluate:
$$\int_{0}^{\frac{\pi}{4}} \frac{x \, dx}{1 + \cos 2x + \sin 2x}$$

OR

(b) Find:
$$\int e^x \left[\frac{1}{(1+x^2)^{\frac{3}{2}}} + \frac{x}{\sqrt{1+x^2}} \right] dx$$

28. Find:
$$\int \frac{3x+5}{\sqrt{x^2+2x+4}} \, dx$$

29. (a) Find the particular solution of the differential equation $\frac{dy}{dx} = y \cot 2x$, given that $y\left(\frac{\pi}{4}\right) = 2$.

OR

(b) Find the particular solution of the differential equation

$$(xe^{\frac{\chi}{x}} + y) dx = x dy$$
, given that $y = 1$ when $x = 1$.

30. Solve the following linear programming problem graphically :

Maximise
$$Z = 2x + 3y$$

subject to the constraints:

$$x+y \le 6$$

$$x \ge 2$$

$$x, y \ge 0$$

(a) A card from a well shuffled deck of 52 playing cards is lost. From the remaining cards of the pack, a card is drawn at random and is found to be a King. Find the probability of the lost card being a King.

OR

(b) A biased die is twice as likely to show an even number as an odd number. If such a die is thrown twice, find the probability distribution of the number of sixes. Also, find the mean of the distribution.

SECTION - D

In the section there are 4 long answer type questions of 5 marks each.

32. (a) Sketch the graph of y = x |x| and hence find the area bounded by this curve, X-axis and the ordinates x = -2 and x = 2, using integration.

OR

- (b) Using integration, find the area bounded by the ellipse $9x^2 + 25y^2 = 225$, the lines x = -2, x = 2, and the X-axis.
- 33 (a) Let A = R {5} and B = R {1}. Consider the function $f: A \to B$, defined by $f(x) = \frac{x-3}{x-5}$. Show that f is one-one and onto.

OR

(b) Check whether the relation S in the set of real numbers R defined by S = {(a, b) : where a - b + √2 is an irrational number} is reflexive, symmetric or transitive.

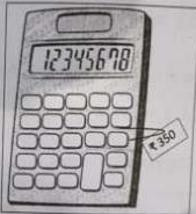
If
$$A = \begin{bmatrix} 2 & 1 & -3 \\ 3 & 2 & 1 \\ 1 & 2 & -1 \end{bmatrix}$$
, find A^{-1} and hence solve the following system of equations:

$$2x + y - 3z = 13$$

$$3x + 2y + z = 4$$

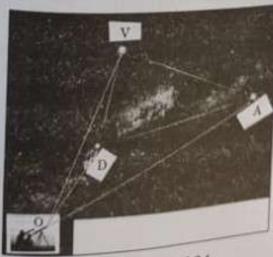
$$x + 2y - z = 8$$

(a) Find the distance between the line $\frac{x}{2} = \frac{2y-6}{4} = \frac{1-z}{-1}$ and another line parallel to it passing through the point (4, 0, -5).


OR

(b) If the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-7}$ are perpendicular to each other, find the value of k and hence write the vector equation of a line perpendicular to these two lines and passing through the point (3, -4, 7).

SECTION - E


In this section, there are 3 case study based questions of 4 marks each.

A store has been selling calculators at 350 each. A market survey indicates that a reduction in price (p) of calculator increases the number of units (x) sold. The relation between the price and quantity sold is given by the demand function $p = 450 - \frac{1}{2}x$.

Based on the above information, answer the following questions:

- (i) Determine the number of units (x) that should be sold to maximise the revenue R(x) = xp(x). Also, verify the result.
- (ii) What rebate in price of calculator should the store give to maximise the revenue?
- An instructor at the astronomical centre shows three among the brightest stars in a particular constellation. Assume that the telescope is located at O(0,0,0) and the three stars have their locations at the points D, A and V having position vectors $2\hat{i} + 3\hat{j} + 4\hat{k}$, $7\hat{i} + 5\hat{j} + 8\hat{k}$ and $-3\hat{i} + 7\hat{j} + 11\hat{k}$ respectively.

Page 21 of 24

P.T.O.

	Based on the above information, answer the following questions: Based on the above information star A? How far is the star V from star A? in the direction of DA.	
	answer the lone	1
	information, dar A?	
	Based on the above information, answer to Based on the above information of DA.	1
	Rassed on far is the State Linection of DA .	0
-	10 How law or in the direct	2
1	ound a unit vector of AVDA.	
1	Based on the above Into V from star I	
9	(iii) Fina OR \rightarrow mostor DA ?	2
-	iestion of vector DV on vector DA .	
	what is the projection	
2	(iii) Find the mean of or on vector DA? (iii) What is the projection of vector DV on vector DA?	
	TO THE RESERVE OF THE PARTY OF	
	What is the projection of Robit Jaspreet and Alia appeared for an interview for three vacancies in soft. The probability of Robit's selection is $\frac{1}{5}$, Jaspreet's	
	Cara DUCV	
	the same f and Alia's selection is $\frac{1}{4}$. The event of selection is	
- 1	aladion is and Alia's selection is The event of selection is	
	septime g	
- 1	independent of each other.	

Based on the above information, answer the following questions:

What is the probability that at least one of them is selected? Find P(G | H) where G is the event of Jaspreet's selection and H

1

1

- denotes the event that Rohit is not selected.
- (iii) Find the probability that exactly one of them is selected. 2
- OR (iii) Find the probability that exactly two of them are selected.

65/4/1/21/QSS4R